listed in Table $1^{*}$ and selected bond distances and angles in Table 2. The molecule is depicted in Fig. 1.

Related literature. The refinement is an improvement of the reported refinement for which $R=0.048$ for $2388 I \geq 3 \sigma(I)$ data (Harrison, King \& Healy, 1979).

[^0]This work was supported by the University of Malaya (PJP 152/91).

## References

Falr, C. K. (1990). MolEN Structure Determination System. Delft Instruments, X-ray Diffraction B.V., Röntgenweg 1, 2624 BD Delft, The Netherlands.
Harrison, P. G., King, T. J. \& Healy, M. A. (1979). J. Organomet. Chem. 182, 17-36.
Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 1750-1752.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 159 166.

Acta Cryst. (1993). C49, 754-756

# Structure of Bis(triphenyltin) Succinate-[Bis(triphenyltin) Succinate Bis( $N, N$-dimethylformamide)] (1/1) 

By Seik Weng Ng<br>Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpar, Malaysia<br>and V. G. Kumar Das<br>Department of Chemistry, University of Malaya, 59100 Kuala Lumpar, Malaysia

(Received 10 February 1992; accepted 17 August 1992)


#### Abstract

Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{12}\right], \quad M_{r}=\) 1778.38, triclinic, $P \overline{1}, \quad a=12.1759$ (7), $\quad b=$ 12.8661 (9), $c=14.3293$ (9) $\AA, \alpha=79.041$ ( 5 ),,$\beta=$ 71.665 (5), $\gamma=69.467$ (5) ${ }^{\circ}, V=1987.4$ (2) $\AA^{3}, Z=1$, $D_{x}=1.486 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $13.03 \mathrm{~cm}^{-1}, F(000)=892, T=298 \mathrm{~K}, R=0.026$ for 5135 reflections. The carbonyl O atoms of the centrosymmetric bis(triphenyltin) succinate.2DMF $\left[\mathrm{Sn}-\mathrm{O}=2.145\right.$ (3), $\quad \mathrm{Sn} \leftarrow \mathrm{O}_{\mathrm{DMF}}=2.404$ (3) $\AA$ ] molecule are linked datively to the Sn atoms $[\mathrm{Sn}-\mathrm{O}=$ 2.444 (2) $\AA$ ] of two centrosymmetric bis(triphenyltin) succinate $[\mathrm{Sn}-\mathrm{O}=2.112$ (3) $\AA$ ] molecules to form a three-dimensional network. The coordination environment at each of the Sn atoms is a transtrigonal bipyramid.


Experimental. The compound, m.p. 430 K , was obtained as an adventitious product on reacting $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnOH}$ with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCS}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ in hot ethanol. As the condensation performed in an earlier attempt yielded the stannyl ester $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCS}_{2} \mathrm{CH}_{2}-$ $\mathrm{CO}_{2} \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}(\mathrm{Ng}$ \& Kumar Das, 1991), the anomalous occurrence of the $-\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}-$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}$ components in the present compound
must be attributed to a transformation of either the parent acid or its stannyl salt, induced by an undefined impurity in the solvent used in the experiment. A parallel can be drawn to the well documented susceptibility of a number of ethylenebisdithiocarbamate salts to oxidation and hydrolysis. Aeration of a suspension of manganese ethylene-1,2-bisdithiocarbamate at pH 6 , for example, results in the formation of the break-down products, ethylenethiourea, 5,6-dihydro-3H-imidazo-1,2,4-dithiazole-3-thione, ethylenediamine, carbon disulfide and elemental sulfur (Vonk, 1975).
A crystal measuring approximately $0.11 \times 0.18 \times$ 0.22 mm was used in the study. Cell dimensions were calculated from the 25 most intense reflections in the $13 \leq \theta \leq 15^{\circ}$ shell. Data were collected on an EnrafNonius CAD-4 diffractometer using $\omega-2 \theta$ scans to $2 \theta_{\max }=50^{\circ}$ ( $h 0$ to $14, k-15$ to $15, l-17$ to 17 ). Of 7350 data measured, 6622 were unique with 5135 obeying $I \geq 3 \sigma(I)$. Crystal decay was monitored by three reflections ( $2 \overline{4} 7,27 \overline{3}$ and $45 \overline{5}$ ). A linear decay correction was applied owing to a decrease in their intensities of $6.5 \%$ during the 61 h of data collection (minimum/maximum corrections 1.00002/1.03396;

[^1]Table 1. Positional parameters and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

| $\begin{gathered} B_{\mathrm{eq}}=(4 / 3)\left[a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+a b(\cos \gamma) B_{12}+a c(\cos \beta) B_{13}\right. \\ \left.+b c(\cos \alpha) B_{23}\right] . \end{gathered}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {eq }}$ |
| Snla | 0.22136 (2) | 0.29070 (2) | 0.17503 (2) | 2.808 (6) |
| Ola | 0.3379 (2) | 0.1656 (2) | 0.0764 (2) | 3.24 (6) |
| O2a | 0.3422 (2) | 0.0364 (2) | 0.2028 (2) | 2.82 (6) |
| Cla | 0.3544 (3) | 0.2773 (3) | 0.2468 (3) | 3.37 (9) |
| $\mathrm{C} 2 a$ | 0.4596 (4) | 0.3009 (4) | 0.1932 (4) | 4.9 (1) |
| C3a | 0.5445 (4) | 0.2992 (4) | 0.2401 (5) | 6.7 (2) |
| C4a | 0.5241 (5) | 0.2743 (5) | 0.3387 (4) | 7.1 (1) |
| C5a | 0.4213 (4) | 0.2501 (4) | 0.3930 (4) | 5.9 (1) |
| C6a | 0.3369 (4) | 0.2509 (4) | 0.3479 (3) | 4.6 (1) |
| C7a | 0.2076 (3) | 0.4162 (3) | 0.0546 (3) | 3.28 (9) |
| C8a | 0.1084 (4) | 0.5105 (4) | 0.0620 (3) | 4.7 (1) |
| C9a | 0.0954 (4) | 0.5892 (4) | -0.0171 (4) | 5.3 (1) |
| C10a | 0.1802 (5) | 0.5754 (4) | -0.1056 (4) | 5.8 (1) |
| Cl1a | 0.2771 (6) | 0.4832 (5) | -0.1132 (5) | 9.2 (2) |
| C12a | 0.2913 (5) | 0.4038 (4) | -0.0336 (4) | 7.6 (2) |
| Cl 3 a | 0.0726 (3) | 0.2262 (3) | 0.2224 (3) | 3.11 (9) |
| C14a | -0.0184 (4) | 0.2468 (4) | 0.3095 (3) | 4.8 (1) |
| C15a | -0.1168 (4) | 0.2051 (5) | 0.3324 (4) | 6.3 (2) |
| C16a | -0.1236 (5) | 0.1464 (4) | 0.2671 (4) | 6.4 (1) |
| C17a | -0.0368 (4) | 0.1262 (4) | 0.1808 (4) | 6.1 (1) |
| C18a | 0.0609 (4) | 0.1651 (3) | 0.1587 (3) | 4.2 (1) |
| C19a | 0.3724 (3) | 0.0647 (3) | 0.1132 (3) | 2.51 (8) |
| C20a | 0.4514 (3) | -0.0197 (3) | 0.0391 (3) | 2.99 (9) |
| O 1 | 0.0939 (3) | 0.4332 (2) | 0.2841 (2) | 4.86 (8) |
| C2 | 0.1280 (5) | 0.4941 (4) | 0.3173 (4) | 4.9 (1) |
| N3 | 0.0556 (4) | 0.5784 (3) | 0.3683 (3) | 5.6 (1) |
| C4 | 0.1037 (6) | 0.6461 (5) | 0.4046 (5) | 8.9 (2) |
| C5 | -0.0741 (6) | 0.6078 (5) | 0.3853 (6) | 9.2 (2) |
| Snl $b$ | 0.41792 (2) | -0.13753 (2) | 0.30005 (2) | 2.974 (6) |
| O1b | 0.5069 (3) | -0.2887 (2) | 0.2712 (2) | 4.79 (8) |
| $\mathrm{O} 2 b$ | 0.3393 (3) | -0.3281 (3) | 0.4588 (3) | 5.6 (1) |
| C1b | 0.3071 (4) | -0.0416 (3) | 0.4198 (3) | 3.27 (9) |
| C2b | 0.1843 (4) | 0.0093 (4) | 0.4324 (3) | 4.2 (1) |
| C3b | 0.1127 (5) | 0.1127 (5) | 0.0711 (4) | 5.4 (1) |
| C4b | 0.1644 (5) | 0.0829 (4) | 0.5784 (4) | 5.5 (1) |
| C5b | 0.2864 (5) | 0.0355 (4) | 0.5672 (3) | 5.7 (1) |
| C6b | 0.3567 (4) | -0.0270 (4) | 0.4888 (3) | 4.6 (1) |
| C7b | 0.5934 (3) | -0.1163 (3) | 0.2308 (3) | 3.34 (9) |
| C8b | 0.6087 (4) | -0.0121 (4) | 0.2070 (3) | 4.2 (1) |
| C 96 | 0.7207 (4) | 0.0004 (5) | 0.1570 (4) | 5.7 (1) |
| C10b | 0.8189 (5) | -0.0904 (5) | 0.1310 (4) | 7.2 (2) |
| C11b | 0.8074 (5) | -0.1932 (6) | 0.1557 (5) | 7.8 (2) |
| Cl2b | 0.6950 (5) | -0.2069 (4) | 0.2063 (4) | 5.9 (2) |
| Cl3 ${ }^{\text {b }}$ | 0.3391 (4) | -0.2076 (3) | 0.2244 (3) | 3.9 (1) |
| C14b | 0.3944 (5) | -0.3161 (4) | 0.2004 (4) | 5.6 (1) |
| C15b | 0.3494 (6) | -0.3601 (5) | 0.1464 (5) | 9.1 (2) |
| C16b | 0.2492 (6) | -0.3004 (5) | 0.1178 (5) | 11.4 (2) |
| C17b | 0.1903 (5) | -0.1938 (5) | 0.1429 (5) | 9.7 (2) |
| C18b | 0.2355 (4) | -0.1463 (4) | 0.1943 (4) | 6.2 (1) |
| C19b | 0.4491 (4) | -0.3531 (3) | 0.4303 (3) | 4.0 (1) |
| C20b | 0.5320 (4) | -0.4636 (3) | 0.4622 (4) | 4.9 (1) |

average correction 1.01533). The data set was corrected for absorption by using $\psi$-scan data (minimum/ maximum transmission $0.9608 / 0.9998$; average transmission 0.9804). The structure was solved by the heavy-atom method, and all non-H atoms were refined anisotropically. H atoms were generated ( $\mathrm{C}-\mathrm{H}=0.95 \AA, B=5 \AA^{2}$ ) and were allowed to ride on their respective C atoms. Full-matrix leastsquares refinement based on $F$ for the 460 variables gave final $R=0.026, \quad w R=0.029 \quad\left\{w=\left[\sigma(F)^{2}+\right.\right.$ $\left.\left.(0.02 F)^{2}+1\right]^{-1}\right\} ; \quad S=0.358 ; \quad(\Delta / \sigma)_{\text {max }} \leq 0.01 ;$ $(\Delta \rho)_{\min / \max }=-0.10(5) / 0.30(5)$ e $\AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.3.1 and 2.28). Computations were performed by using the MolEN structure determination package (Fair, 1990) on a DEC MicroVAX minicomputer. Frac-

Table 2. Selected bond distances ( $\AA$ ) and angles ( ${ }^{\circ}$ )

| $\mathrm{Snla}-\mathrm{Ola}$ | 2.145 (3) | $\mathrm{Sn} 1 b-\mathrm{O} 2 a$ | 2.444 (2) |
| :---: | :---: | :---: | :---: |
| Snla-Cla | 2.120 (4) | $\mathrm{Sn} 1 b-\mathrm{Ol} b$ | 2.112 (3) |
| Snla-C7a | 2.132 (4) | $\mathrm{Sn} 16-\mathrm{Cl} b$ | 2.114 (4) |
| Snla-Cl3a | 2.121 (4) | Sn11b-C7b | 2.144 (4) |
| $\mathrm{Sn} 1 a-\mathrm{Ol}$ | 2.404 (3) | $\mathrm{Snl} b-\mathrm{Cl} 3 b$ | 2.131 (5) |
| $\mathrm{Ola}-\mathrm{Snla-Cla}$ | 95.1 (1) | $\mathrm{O} 2 a-\mathrm{Sn} 1 b-\mathrm{Cl} b$ | 82.7 (1) |
| Ola-Snla-C7a | 91.3 (1) | $\mathrm{O} 2 a-\mathrm{Sn} 1 b-\mathrm{C} 7 b$ | 84.9 (1) |
| $\mathrm{Ola}-\mathrm{Snla}-\mathrm{Cl} 3 a$ | 95.8 (1) | $\mathrm{O} 2 a-\mathrm{Snl} b-\mathrm{Cl} 3 b$ | 85.3 (1) |
| Ola-Snla-Ol | 178.7 (1) | $\mathrm{Ol} b-\mathrm{Snl} b-\mathrm{Cl} b$ | 102.5 (1) |
| Cla-Snla-C7a | 115.7 (2) | $\mathrm{Ol} b-\mathrm{Sn1} b-\mathrm{C} 7 b$ | 87.6 (1) |
| $\mathrm{Cla}-\mathrm{Snla}-\mathrm{Cl} 3 a$ | 129.8 (2) | $\mathrm{Ol} b-\mathrm{Sn} 1 b-\mathrm{Cl} 3 b$ | 96.8 (2) |
| $\mathrm{Cl} a-\mathrm{Snla}-\mathrm{Ol}$ | 84.2 (1) | $\mathrm{Cl} b-\mathrm{Sn1} b-\mathrm{C} 7 b$ | 116.5 (2) |
| $\mathrm{C} 7 a-\mathrm{Snla}-\mathrm{Cl} 3 a$ | 112.8 (2) | $\mathrm{Cl} b-\mathrm{Sn} 1 b-\mathrm{Cl} 3 b$ | 120.3 (2) |
| C7a-Snla-O1 | 88.1 (1) | $\mathrm{C} 7 b-\mathrm{Sn} 16-\mathrm{Cl} 3 b$ | 120.3 (2) |
| $\mathrm{Cl} 3 a-\mathrm{Sn} 1 a-\mathrm{Ol}$ | 85.4 (1) | $\mathrm{Sn1} b-\mathrm{O} 2 a-\mathrm{Cl} 9 a$ | 131.4 (2) |
| Snla-Ola-C19a | 118.1 (2) | $\mathrm{SnI} b-\mathrm{Ol} b-\mathrm{Cl} 9 b$ | 122.5 (3) |
| $\mathrm{O} 2 a-\mathrm{Snl} b-\mathrm{O} 1 b$ | 172.2 (1) |  |  |



Fig. 1. Plot of the tetranuclear bis(triphenyltin) succinate-[bis(triphenyltin) succinate bis- $N, N$-dimethylformamide] complex. The center of inversion lies midway between the methylene C atoms of the succinato anion.
tional atomic coordinates are listed in Table 1;* selected bond distances and angles are listed in Table 2. The tetranuclear complex is depicted in Fig. 1.

Related literature. Triphenyltin alkanoates generally do not form isolable adducts with neutral $O$-donor ligands as they themselves are coordinately saturated five-coordinate carboxylate-bridged compounds (Tiekink, 1991). In the few reported complexes, the $\mathrm{Sn} \leftarrow \mathrm{O}$ bonds are typically long, as has been found,

[^2]for example, in the quinolyloxyacetate hydrate $[\mathrm{Sn} \leftarrow \mathrm{O}=2.338$ (7), 2.391 (6) $\AA$ (Kumar Das, Chen, $\mathrm{Ng} \&$ Mak, 1987)] and trichloroacetate.methanol [ $\mathrm{Sn} \leftarrow \mathrm{O}=2.400$ (3) À (Alcock \& Roe, 1989)] complexes. The present tetranuclear complex (I) formally consists of two coordinated DMF and two independent bis(triphenyltin) succinate molecules, $a$ and $b$.

(I)

In the complex, the $\operatorname{Sn} 1 a \leftarrow \mathrm{O}_{\mathrm{DMF}}$ bond distance is only slightly shorter than the $\mathrm{Sn} \leftarrow \mathrm{O}$ carboxylate bridge and compares well with the 2.402 (5) $\AA$ length found in the DMF adduct of the $N$-triphenylstannyl derivative of saccharin (Ng, Kuthubutheen, Zainudin, Chen, Kumar Das, Schulze, Molloy, Yip \& Mak, 1991). The intermolecular bridging distance of 2.444 (2) $\AA$ is longer than that found in a monocarboxylate such as triphenyltin acetate [ $\mathrm{Sn} \leftarrow \mathrm{O}=$ 2.349 (3) $\AA$ (Molloy, Purcell, Quill \& Nowell, 1984)], but is similar to those found in the bis(trimethyltin) derivatives of acetylenedicarboxylic $[\mathrm{Sn} \leftarrow \mathrm{O}=$ 2.401 (4), 2.408 (4) Á], terephthalic $\quad[\mathrm{Sn} \leftarrow \mathrm{O}=$
2.506 (3) Å] (Glowacki, Huber \& Preut, 1988) and malonic $[\mathrm{Sn} \leftarrow \mathrm{O}=2.44$ (2), 2.46 (2) $\AA$ (Schubert, 1978)] acids.

We thank the University of Malaya (PJP 152/91) and the National Science Council for R \& D (grant No. 2-07-04-06) for supporting this research.

## References

Alcock, N. W. \& Roe, S. W. (1989). J. Chem. Soc. Dalton Trans. pp. 1589-1598.
Farr, C. K. (1990). MolEN Structure Determination System. Delft Instruments, X-ray Diffraction B. V., Röntgenweg 1, 2624 BD Delft, The Netherlands.
Glowacki, A., Huber, F. \& Preut, H. (1988). Recl Trav. Chim. Pays-Bas, 107, 278-285.
Kumar das, V. G., Chen, W., Ng, S. W. \& Mak, T. C. W. (1987). J. Organomet. Chem. 322, 33-47.

Molloy, K. C., Purcell, T. G., Quill, K. \& Nowell, i. W. (1984). J. Organomet. Chem. 267, 237-247.

Ng, S. W. \& Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143-156.
Ng, S. W., Kuthubutheen, A. J., Zainudin, A:, Chen, W., Kumar Das, V. G., Schulze, B., Molloy, K. C., Yip, W.-H. \& MaK, T. C. W. (1991). J. Organomet. Chem. 403, 101-109.
Schubert, U. (1978). J. Organomet. Chem. 155, 285-291.
Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
Vonk, J. W. (1975). Chemical Decomposition of Bisdithiocarbamate Fungicides and their Metabolism by Plants and Microorganisms. Thesis. TNO Utrecht, The Netherlands.

Acta Cryst. (1993). C49, 756-758

# Bis(tetrabutylammonium) Nonadecaoxohexamolybdenum(VI): a Second Polymorph 

By Arnold L. Rheingold, Corbet B. White and Brian S. Haggerty<br>Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA<br>and Eric A. Maatta<br>Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA

(Received 26 March 1992; accepted 17 July 1992)


#### Abstract

C}_{16} \mathrm{H}_{36} \mathrm{~N}\right]_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right], M_{r}=1364.6\), monoclinic, $\quad C 2 / c, \quad a=16.280$ (3), $\quad b=17.204$ (3),$\quad c=$ 17.738 (4) $\AA, \beta=101.42$ (2) ${ }^{\circ}, V=4869.3$ (17) $\AA^{3}, Z$ $=4, D_{x}=1.861 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo K $\alpha)=0.71073 \AA, \mu$ $=15.66 \mathrm{~cm}^{-1}, F(000)=2728, T=298 \mathrm{~K}, R=0.0633$ for 2857 observed reflections and 269 least-squares parameters. The six Mo atoms form the standard distorted octahedral cage with O atoms bridging the Mo atoms. There is a crystallographic twofold axis in the anionic cluster $\left(\mathrm{MO}_{6} \mathrm{O}_{19}^{2-}\right)$ through the central O atom and containing $\mathrm{Mo}(2)$ and $\mathrm{Mo}(4)$.


Experimental. Orange-red crystals were grown from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}(0.26 \times 0.32 \times 0.32 \mathrm{~mm})$. Data were collected on a Siemens $P 4$ diffractometer with graphite monochromator, using $\omega$ scans. Lattice parameters were determined from least-squares fit of 25 reflections ( $20 \leq 2 \theta \leq 25^{\circ}$ ), minimized on $F$. Semiempirical absorption correction was applied to the data set $\left[X E M P\right.$ (Sheldrick, 1990), $T_{\max } / T_{\min }=$ $\left.0.178 / 0.092, \mu=15.66 \mathrm{~cm}^{-1}\right] .2 \theta_{\max }=50^{\circ}(h= \pm 20$, $k=+21, l=+22$ ). Three standard reflections ( $\overline{9} 13$, $\overline{1} 90$ and $0,0,10$ ) for 4609 reflections collected, showed


[^0]:    * Lists of structure factors, anisotropic thermal parameters and calculated H -atom positional parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55636 ( 28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: OH1001]

[^1]:    © 1993 International Union of Crystallography

[^2]:    * Lists of structure factors, anisotropic thermal parameters, calculated H-atom positional parameters, and complete bond lengths and bond angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55637 ( 59 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: OH1002]

